3) ブラッドレイの一対比較法

どちらが良いか(あるいは、好きか)という 1 か 0 の評価データから、判定比を逐次近似により推定する方法。ブラッドレイは、試料 j よりも試料 i の方が良い(好きだ)と答える確率を π_{ij} としたときに、 π_{ij} は、試料 i と j の判定比 π_{i} 及び π_{j} から、以下の式で求められると考えた 22 。即ち、

$$\pi_{ij} = \frac{\pi_i}{\pi_i + \pi_j} \tag{2.3.14}$$

ブラッドレイの一対比較法は、この確率を基にして、各試料の判定比 π_i を推定しようとするものである。なお、 π_i の推定値は、次の連立方程式を解くことによって求められる。

$$\frac{f_i}{\pi_i} = n \sum_{j \neq i} \frac{1}{\pi_i + \pi_j} \tag{2.3.15}$$

$$\sum_{i=1}^{k} \pi_i = 1 \tag{2.3.16}$$

なお、kは試料の数、nは反復数である。

また、f, は、資料 i が、i を除くすべての試料との組み合わせで、i の方が良い(好きだ)と答えた数の総和である。

表 2.3.4 判定結果一覧表 (i と j の組み合わせで、より好きだと回答した方に○がついている)

組み合わせ	A1	A2	A1	АЗ	A1	A4	A2	АЗ	A2	A4	А3	A4
1	\circ	×	×	\circ	×	\circ	×	\circ	×	\circ	0	×
2	\circ	×	×	\bigcirc	×	\bigcirc	\circ	×	×	\bigcirc	×	\bigcirc
3	×	\bigcirc	×	\bigcirc	×	\bigcirc	\circ	×	\circ	×	×	\bigcirc
4	×	\bigcirc	0	×	×	\bigcirc	×	\bigcirc	×	\bigcirc	×	\bigcirc
5	×	\bigcirc	0	×	×	\bigcirc	×	\circ	×	\bigcirc	0	×
	2	3	2 3	3	0	5	2 3	3	1 4	ļ	2	3

手順1

試料数を k、比較回数を n とする。表 2.3.4 の例では、k=4、n=5 である。

まず、 A_i を他の (k-1) 個の試料と n 回比較した n(k-1) の判定の中で A_i が良いと判断された回数 f_i を求める。 その手順としては、まず各組み合わせで \bigcirc の数を求め、その結果を表にまとめる(表 2.3.5)。下の表の 1 行目の A_1 と 2 列目の A_2 の位置には、 A_1 と A_2 で、 A_1 の方が良い(あるいは、好き)と判断された回数(この場合は、2)が書かれている。同様に、 2 行目の A_1 と A_2 で、 A_2 の方が良い(あるいは、好き)と判断された回数(この場合は、3)が書かれている。以下、同様である。

そして、この表の各行の和が、f,になる。

表 2.3.5 表 2.3.4 をまとめ直したもの

	A ₁	A ₂	A ₃	A ₄	$\mathbf{f_i}$
A_1		2	2	0	4
A ₂	3		2	1	6
Аз	3	3		2	8
A4	5	4	3		12

手順2

判定比を以下の逐次近似により推定する。

①第0次近似の求め方

処理間に差がないと仮定して、
$$\pi_1^{(0)} = \pi_2^{(0)} = \dots = \pi_k^{(0)} = \frac{1}{k}$$
 (2.3.17)

(今回の例では、
$$\pi_1^{(0)} = \pi_2^{(0)} = \pi_3^{(0)} = \pi_4^{(0)} = \frac{1}{4}$$
)

と置く。

②第1次近似π⁽¹⁾の求め方

$$\frac{f_i}{\pi_i} = n \sum_{i \neq i} \frac{1}{\pi_i + \pi_i} \tag{2.3.18}$$

より、

$$\pi_i = \frac{f_i}{n} / \sum_{i \neq i} \frac{1}{\pi_i + \pi_i} \tag{2.3.19}$$

よって、

$$\pi_i^{(1)} = \frac{f_i}{n} / \frac{k(k-1)}{2} \tag{2.3.20}$$

今回の例では、

$$\pi_1^{(1)} = \frac{f_1}{n} / \frac{k(k-1)}{2} = \frac{4}{5} / \frac{4(4-1)}{2} = \frac{0.8}{6} = 0.13$$
 (2.3.21)

$$\pi_2^{(1)} = \frac{f_2}{n} / \frac{k(k-1)}{2} = \frac{6}{5} / \frac{4(4-1)}{2} = \frac{1.2}{6} = 0.20$$

$$\pi_3^{(1)} = \frac{f_3}{n} / \frac{k(k-1)}{2} = \frac{8}{5} / \frac{4(4-1)}{2} = \frac{1.6}{6} = 0.27$$

$$\pi_4^{(1)} = \frac{f_4}{n} / \frac{k(k-1)}{2} = \frac{12}{5} / \frac{4(4-1)}{2} = \frac{2.4}{6} = 0.40$$

となる。

また、

$$\sum_{i=1}^{k} \pi_i = 1 \tag{2.3.22}$$

より、求めた $\pi_{i}^{(1)}$ をの全体の和が 1 になるように調整する。 つまり、

$$\pi_1^{(1)} = \frac{\pi_1^{(1)}}{\pi_1^{(1)} + \pi_2^{(1)} + \pi_3^{(1)} + \pi_4^{(1)}} = \frac{0.13}{0.13 + 0.20 + 0.27 + 0.40} = 0.13$$
(2.3.23)

$$\pi_2^{(1)} = \frac{\pi_2^{(1)}}{\pi_1^{(1)} + \pi_2^{(1)} + \pi_3^{(1)} + \pi_4^{(1)}} = \frac{0.20}{0.13 + 0.20 + 0.27 + 0.40} = 0.20$$

$$\pi_3^{(1)} = \frac{\pi_3^{(1)}}{\pi_1^{(1)} + \pi_2^{(1)} + \pi_3^{(1)} + \pi_4^{(1)}} = \frac{0.27}{0.13 + 0.20 + 0.27 + 0.40} = 0.27$$

$$\pi_4^{(1)} = \frac{\pi_4^{(1)}}{\pi_1^{(1)} + \pi_2^{(1)} + \pi_3^{(1)} + \pi_4^{(1)}} = \frac{0.40}{0.13 + 0.20 + 0.27 + 0.40} = 0.40$$

③第2次近似

$$\pi_i^{(2)} = \frac{f_i}{n} / \sum_{i \neq i} \frac{1}{\pi_i^{(1)} + \pi_i^{(1)}}$$
 (2.3.24)

より、

$$\pi_{1}^{(2)} = \frac{f_{1}}{n} / \sum_{j \neq i} \frac{1}{\pi_{1}^{(1)} + \pi_{j}^{(1)}}$$

$$= \frac{4}{5} / \left(\frac{1}{\pi_{1}^{(1)} + \pi_{2}^{(1)}} + \frac{1}{\pi_{1}^{(1)} + \pi_{3}^{(1)}} + \frac{1}{\pi_{1}^{(1)} + \pi_{4}^{(1)}} \right)$$

$$= \frac{4}{5} / \left(\frac{1}{0.13 + 0.20} + \frac{1}{0.13 + 0.27} + \frac{1}{0.13 + 0.40} \right)$$

$$= \frac{4}{5} / (3.03 + 2.50 + 1.89)$$

$$= 0.80 / 7.42$$

$$= 0.11$$

$$(2.3.25)$$

$$\begin{split} \pi_2^{(2)} &= \frac{f_2}{n} / \sum_{j \neq i} \frac{1}{\pi_2^{(1)} + \pi_j^{(1)}} \\ &= \frac{5}{6} / \left(\frac{1}{\pi_2^{(1)} + \pi_1^{(1)}} + \frac{1}{\pi_2^{(1)} + \pi_3^{(1)}} + \frac{1}{\pi_2^{(1)} + \pi_4^{(1)}} \right) \\ &= \frac{5}{6} / \left(\frac{1}{0.20 + 0.13} + \frac{1}{0.20 + 0.27} + \frac{1}{0.20 + 0.40} \right) \\ &= \frac{5}{6} / (3.03 + 2.13 + 1.67) \\ &= 1.20 / 6.83 \\ &= 0.18 \end{split}$$

$$\pi_3^{(2)} = \frac{f_3}{n} / \sum_{j \neq i} \frac{1}{\pi_3^{(1)} + \pi_j^{(1)}}$$

$$= \frac{8}{5} / \left(\frac{1}{\pi_3^{(1)} + \pi_1^{(1)}} + \frac{1}{\pi_3^{(1)} + \pi_2^{(1)}} + \frac{1}{\pi_3^{(1)} + \pi_4^{(1)}} \right)$$

$$= \frac{8}{5} / \left(\frac{1}{0.27 + 0.13} + \frac{1}{0.27 + 0.20} + \frac{1}{0.27 + 0.40} \right)$$

$$= \frac{8}{5} / (2.50 + 2.13 + 1.49)$$

$$= 1.60 / 6.12$$

$$= 0.26$$

$$\pi_{4}^{(2)} = \frac{f_{4}}{n} / \sum_{j \neq i} \frac{1}{\pi_{4}^{(1)} + \pi_{j}^{(1)}}$$

$$= \frac{12}{5} / \left(\frac{1}{\pi_{4}^{(1)} + \pi_{1}^{(1)}} + \frac{1}{\pi_{4}^{(1)} + \pi_{2}^{(1)}} + \frac{1}{\pi_{4}^{(1)} + \pi_{3}^{(1)}} \right)$$

$$= \frac{12}{5} / \left(\frac{1}{0.40 + 0.13} + \frac{1}{0.40 + 0.20} + \frac{1}{0.40 + 0.27} \right)$$

$$= \frac{12}{5} / (1.89 + 1.67 + 1.49)$$

$$= 2.40 / 5.05$$

$$= 0.48$$

となる。

また、

$$\sum_{i=1}^{k} \pi_i = 1 \tag{2.3.26}$$

より、求めた $\pi_i^{(1)}$ を全体の和が 1 になるように調整する。 つまり、

$$\pi_1^{(2)} = \frac{\pi_1^{(2)}}{\pi_1^{(2)} + \pi_2^{(2)} + \pi_3^{(2)} + \pi_4^{(2)}} = \frac{0.11}{0.11 + 0.18 + 0.26 + 0.48} = 0.11$$
(2.3.27)

$$\pi_2^{(2)} = \frac{\pi_2^{(2)}}{\pi_1^{(2)} + \pi_2^{(2)} + \pi_3^{(2)} + \pi_4^{(2)}} = \frac{0.18}{0.11 + 0.18 + 0.26 + 0.48} = 0.17$$

$$\pi_3^{(2)} = \frac{\pi_3^{(2)}}{\pi_1^{(2)} + \pi_2^{(2)} + \pi_3^{(2)} + \pi_4^{(2)}} = \frac{0.26}{0.11 + 0.18 + 0.26 + 0.48} = 0.25$$

$$\pi_4^{(2)} = \frac{\pi_4^{(2)}}{\pi_1^{(2)} + \pi_2^{(2)} + \pi_3^{(2)} + \pi_4^{(2)}} = \frac{0.48}{0.11 + 0.18 + 0.26 + 0.48} = 0.47$$

③以下、同じ操作を繰り返して、各判定比が収束するまで n+1 次の判定比を求める。

④このようにして判定比が求められたら、試料間に差があるかどうかを検定する。 以下の式により、自由度 k -1 の χ^2 検定を行う。得られた χ^2 値が、 χ^2 分布の 5 % 点以下であれば、試 料間に有意差があるといえる。

$$\chi_0^2 = nk(k-1)\log_e 2 - 2 \times \left\{ n \sum_{i=1}^k \sum_{j>i} \log_e(\pi_i + \pi_j) - \sum_{i=1}^k f_i \log_e \pi_i \right\}$$
 (2.3.28)

以上の手順で、第4次近似までの判定比を、表2.3.6に示す(太い文字が各回の判定比である)

表 2.3.6 得られた判定比

ここでは、4次近似で得られた判定比を最終的な判定比の推定量とする。

	fi	fi/n	π (1)	π'(2)	π (2)	π'(3)	π (3)	π'(4)	π (4)
A1	4	0.8	0.133333	0.108475	0.106223	0.098741	0.09718	0.093732	0.092685
A2	6	1.2	0.2	0.176224	0.172566	0.160191	0.157658	0.151183	0.149495
А3	8	1.6	0.266667	0.260465	0.255059	0.24642	0.242524	0.235828	0.233195
A4	12	2.4	0.4	0.476033	0.466152	0.510715	0.502639	0.530547	0.524624
1/	1/(P1+P2)		3	1.021197	3.586942	1.016067	3.924067	1.01129	
1/	1/(P1+P3)		2.5		2.767923		2.943743		
1/(P1+P4)		1.875		1.747106		1.66717			
1/(P2+P3)		2.142857		2.338499		2.498869			
1/(P2+P4)		1.666667		1.565636		1.514471			
1/(P3+P4)		1.5		1.386557		1.341989			

つまり、

$$\pi_1 = 0.09$$

$$\pi_2 = 0.15$$
 $\pi_3 = 0.23$
(2.3.29)

 $\pi_4 = 0.52$

$$\chi_0^2 = 5 \times 4 \times 3 \times \log_e 2 - 2$$

$$\times \{5 \times (\log_{a}(0.09 + 0.15))$$

$$+\log_{e}(0.09+0.23)+\log_{e}(0.09+0.52)$$

$$+\log_{e}(0.15+0.23) + \log_{e}(0.15+0.52) + \log_{e}(0.23+0.52))$$
(2.3.30)

$$-(4 \times \log_a 0.09 + 6 \times \log_a 0.15 + 8 \times \log_a 0.23 + 12 \times \log_a 0.52)$$

 $= 60 \times 0.69 - 2 \times (-22.41 - (-39.61)) = 7.51$

$$\chi_0^2 = 7.51 < \chi^2(3,0.05) = 7.81$$
 (2.3.31)

<結論>

得られた χ^2 値(7.51)は、自由度 3 の χ^2 の 5 %点の値(7.81)よりも小さな値だったことから、試料間に有意差があるといえない。